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Abstract. The biomarker discovery process usually produces a long
list of candidates, which need to be verified. The verification of pro-
tein biomarkers from mass spectrometry data can be done through mea-
suring the detection probability from the mass spectrometer (Peptide
detection). However, the limited size of the experimental data and lack
of a universal quantitative method make the identification of these pep-
tides challenging. In this paper, genetic programming (GP) is proposed
to measure the detection of the peptides in the mass spectrometer. This
is done through measuring the physicochemical chemicals of the pep-
tides and selecting the high responding peptides. The proposed method
performs both feature selection and classification, where feature selec-
tion is adopted to determine the important physicochemical properties
required for the prediction. The proposed GP method is tested on two
different yeast data sets with increasing complexity. It outperforms five
other state-of-the-art classification algorithms. The results also show that
GP outperforms two conventional feature selection methods, namely, Chi
Square and Information Gain Ratio.

1 Introduction

Biomarkers are indicators of a specific biological or disease state [18]. They are
important for many clinical applications and classification of different stages of
diseases. Biomarker detection methods usually produce many biomarkers [11],
and it is necessary to verify those biomarkers before passing them to clinical
validation [18]. The peptide detection (helps in verifying candidate biomarkers)
is a classification problem where the task is to classify peptides as flyers or non-
flyers [12]. The detectable peptides (referred to as quantifiable surrogates) are
the peptides that are characterised to be high responding in the body fluids (e.g.
blood) [9]. This process of discovering the quantifiable surrogates is called veri-
fication, which is a necessary process to bridge the gap between the biomarker
discovery and the clinical-validation experiments [24]. The verification process
is typically done through the absolute quantification of peptides [1]. The ver-
ification of biomarkers is a hard problem due to the high dynamic range of
proteins [18], the complexity of the data and the lack of a universal quantitative
method.
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Mass spectrometry (MS) is capable of sensitive detection, identification and
quantification of proteins. Mass spectrometer measures the molecular weight of
the peptides (with respect to a charge ratio) and its corresponding intensity.
The product spectrum is composed of the mass to charge ratio (m/z) and the
intensity of peptides. Mostly, MS is accompanied with liquid chromatography
for separation of the sample which helps decrease the complexity of the sample.
The produced LC-MS spectrum contains the m/z, the intensity and the retention
time of the peptides. MS-based quantification faces the problem of selecting the
best quantifiable peptides that can give detectable MS peak. Therefore, machine
learning methods can be useful to automatically predict the high responding
peptides.

The physicochemical properties of the peptides can represent the feature vec-
tor for predicting the detectability of peptides. Mostly, the peptide detection
data sets are composed of a large number of features (properties) some of which
can be irrelevant to the classification task. Hence, an effective and powerful
method is needed to perform two tasks. Firstly, feature selection is needed to
select important physiochemical properties. Secondly, the classification of the
data aims to determine the detection probability.

Genetic programming (GP) is an evolutionary technique which has been used
successfully for feature selection and classification [5,8]. GP solves a problem by
evolving computer programs (functions) [22]. It usually starts with a population
of random programs then modifies these programs using its genetic operators
[30]. The GP algorithm consists of the following steps [22]:

1. Initialize a random population of programs;
2. Calculate the goodness of each program through the fitness function;
3. If the stopping criteria are not met, do the following:

– Select some good programs through the selection method;
– Use the genetic operators to perform the changes on the selected pro-

grams;
– Pass the new programs to the following generation;
– Calculate the fitness of the programs in the new generation;

4. Return the program with the best fitness as the designed solution.

GP has the potential to perform feature selection and classification at the
same time [26], and due to the high dimensionality of peptide data, GP is a
good choice for solving peptide detection problem. This paper represents one of
the few attempts to use GP for selecting important features required for peptide
detection.

Goals. The main goal of this paper is to develop a new GP method for measur-
ing peptide detectability. The proposed method performs two important tasks.
Firstly, feature selection that helps in determining the important physiochemical
properties for detection of peptides. Secondly, prediction of flyers (detectable)
and non-flyers (non-detectable) peptides which will be useful for both verifica-
tion of biomarkers candidates and at the same time absolute quantification of
peptides. Precisely, we will investigate the following:
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1. What is the appropriate fitness measure which can make GP reduces the
number of selected features with preserving the maximum classification per-
formance?

2. Can GP outperform conventional feature selection and classification meth-
ods?

3. What are the important physiochemical properties selected?

Organisation. The rest of the paper is organised as follows. Section 2 discusses
the related work on using GP for feature selection and classification and also
the previous work done on peptide detection. Section 3 describes the proposed
GP approach for peptide detection. Section 4 presents the experiment setup, the
data sets description and the feature vector production process. Section 5 reports
the full experiment results and discussions. Section 6 concludes the paper and
gives some directions for future work.

2 Related Work

2.1 GP for Feature Selection and Classification

GP has been successfully used to select features in either filter or embedded ap-
proaches [27, 28]. The advantage of GP for building classification models (with-
out the need to be wrapped to another classifier) makes it a perfect choice for
performing both classification and feature selection tasks, especially in high di-
mensional data such as in [2–4]. GP has been also used to solve the problem of
classification of unbalanced data such as in [6–8]. The success of GP in feature
selection and classification has encouraged us to use it in prediction of peptide
detectability.

2.2 Peptide Detection

Previous studies have been adopted for the use of machine learning techniques
for peptide detection [32]. Decision trees and artificial neural networks (ANN)
have been used in [15] and [31] to relate the physicochemical properties of pro-
teins to their MS detectability. Evolutionary algorithms were also used in a
small number of studies to solve the peptide detection prediction problem in MS
data. For example, in [33], genetic algorithms (GAs) have been used to solve
this problem where the aim was to reach the optimum experimental conditions
for protein detection in MS. GP has been used only in two studies [12, 34] with
promising results. Most of these studies were focused on the maximisation of
the flyers peptides without taking into account the overall accuracy of predic-
tion both flyers and non-flyers peptides. Moreover, previous studies were mostly
focused in determining detectability of peptides based on the whole set of pep-
tides’ properties. The advantage of GP to perform both feature selection and
classification has not been fully investigated in those studies. In this paper, the
determination of the important physicochemical properties for detection predic-
tion is investigated. Moreover, the use of GP system as a prediction system for
peptide detectability is also investigated here.
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3 The New GP Method for Peptide Detection

3.1 Overall Structure

The proposed GP method is performing two tasks, firstly feature selection, in
order to select important physicochemical properties required for accurate pre-
diction, and secondly classification. The method first starts with data set prepa-
ration and generation of feature vectors. This is done through search of MS/MS
through SEQUEST, which produces a data set containing peptides where the
length of each peptide is chosen to be between 5-24 residues. Afterwards the fea-
ture vectors are generated, which are composed of the physicochemical properties
of each peptide in the data set. For each peptide, 544 properties are extracted
from AAindex database [19]. The data sets are divided into half for training and
half for testing. Only the training set is passed to GP to build a classifier model.
The produced model automatically selects features in the terminal nodes of the
tree. The selected features are used to form new training and test sets. Finally,
the algorithm is applied to the unseen test set to measure the detectability of
the peptides.

3.2 Feature Selection

The search space using all of the 544 features (physicochemical property) is
extremely large and hence, feature selection should be performed. GP can auto-
matically select features during the evolution process [26]. The terminal nodes of
evolved trees contain the selected features for building the classification model.
Therefore, GP has the advantage of selecting the features, which have the po-
tential to produce a classifier with better classification performance.

3.3 Peptides Detection (Classification)

Prediction of the detectability of a peptide is a non-trivial classification task
which involves complicated relationships between the classification rules and
also between the input features [12, 17]. The proposed GP method performs
classification by setting a threshold value (as a decision stump) by which the
classification decision is taken. If the GP tree output is less than or equal to this
threshold, the peptide is classified as detectable (flyer) otherwise, it is classified
as non-detectable (non-flyer).

3.4 Improved Fitness Function

The typical standard classification accuracy of the training set may be inappro-
priate for the peptide data sets due to the large number of features. We aim
to select only the most important features. Hence, the fitness function used is
designed to take into account feature selection and classification tasks.

The classification of the data as, true or false has four outcomes: true positive,
false positive, true negative, false negative. These outcomes are represented using
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Table 1. Binary Confusion Matrix

Positive class Negative class

Positive prediction True Positive (TP) False Positive(FP)

Negative prediction False Negative (FN) True Negative (TN)

a confusion matrix which is shown in Table 1. The first task is to maximise the
classification accuracy, the classification accuracy is given by:

Accuracy =
TP + TN

TP + FN + FP + FN

The second task is to reduce the number of features selected by each genetic
program. Therefore, we used the following fitness function which is inspired
by [25].

Fitness = (1 + a ∗ exp n
N )×Accuracy (1)

where n is the number of features selected by GP and N is the original num-
ber of features. The exponential factor decreases with increasing n to give more
fitness to the program with less features. a is a factor used to measure the impor-
tance between reducing the number of features and increasing the classification
accuracy. a is equal to the following:

a = (1 − Current

Total
) (2)

Current is the index of the current generation while Total is the maximum
number of generations. Therefore, the fitness function used in Equation (1) will
achieve the two tasks which are reducing the number of features, increasing
classification performance.

4 Experiments Setup

This section outlines the data sets acquisition, feature vector production, pro-
gram representation and evolutionary parameters.

4.1 Peptide Data Sets and Feature Vectors Production

Data Sets. Two tryptic peptide data sets are used to test the new method.
Both data sets were analysed using LC-ESI-MS and obtained from [12]. The
peptides of first data set were generated from 13 proteins. The proteins were
searched against NCBInr database [29] using Mascot server [20](Matrix science)
to confirm the identity and elution time. Extracted ion chromatograms were
generated for the peptides that did not yield tandem MS data. Each peptide
contains at least five amino acids and generated with either 0 or 1 missed cleavage
and the m/z values range from 300 and 1800. The class label as a flyer or non-
flyer was set by cross referencing the peptides with the generated peptides in the
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lab. This data set (DS1) contains 931 peptides (501 in flyer and 430 in non-flyer
class)

The second data set (DS2.) was downloaded from PeptideAtlas [10] and orig-
inally produced from 24 yeast experiments. The total number of proteins is
2733.The peptides’ length (number of amino acids) ranges from 6 to 42 residues
with 0-2 missed cleavage. Each peptide was assigned a flyer’s class label if it was
observed in the 24 experiments otherwise, it was assigned a non-flyer class label.
The total number of peptides examples is 21515 in which 2121 peptides are in
the flyers’ class and 19394 are in the non-flyers’ class. More details about the
data sets can be found in [12].

Feature Vectors. The data sets were obtained in the form of peptide sequences
(amino acids) and the class label. Hence, in order to use those peptides with the
machine learning techniques they should transformed to numerical feature vec-
tors. The physicochemical properties of the peptides have shown to be related to
their detectability [1]. Therefore, for each peptide, 544 properties were calculated
to transform the peptide data into numerical feature vectors. The 544 properties
were extracted from AAindex database [19] and for each peptide sequence the
average of the property value of each individual amino acid is calculated over
the whole peptide. The physicochemical properties include, for example, mass,
alpha-helical which is the predicted percentage of the secondary structure, hy-
drophobicity, gasphase basicity and isoelectric point. Therefore, each peptide is
an instance used for training and testing the GP algorithm which modeled by
544 feature values and either flyer or non-flyer class label.

4.2 GP Program Representation

The tree structure is used in the experiments as a representation of the GP
program [21]. The features and also a randomly generated constant terminal
are used in the terminal set. The function set contains the four standard math-
ematical operators +,−,%,× and a conditional operator if , a max operator
and a Abs operator. The +,−,× take two arguments and return the addition,
subtraction or multiplication of the two arguments. The % is the usual division ,
which takes two arguments, but it is protected which returns zero if the division
is by zero. max returns the maximum of two arguments while if takes three
arguments and returns the second argument if the first is negative otherwise,
returns the third one. The Abs operator takes only one argument and returns
the absolute value of this argument. The classification is performed by taking
a threshold value of zero in which if the output of the genetic program is less
than or equal to zero the peptide is classified as belonging to the flyer class.
Otherwise, it is classified as belonging to the non-flyer class.

4.3 GP Evolutionary Parameters

The initial population is generated using the ramped half and half method [21].
The number of individuals in the population is 1024. Crossover, mutation and
elitism rates are 70%, 29% and 1% , respectively. The maximum tree depth is set
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Table 2. GP evolutionary parameters

Initialization method Ramped Half-and Half
Tree Depth 8

Number of Generations 100
Mutation rate 29%
Crossover rate 70%
Elitism rate 1%

Population Size 1024
Selection type Tournament

Tournament Size 4

to 8 in order to avoid bloating. The method of selection used is the tournament
method and its size is set to 4. The evolution runs for 100 generations. 50% of
the data is randomly selected for training GP and the other 50% is kept as a
test set. These parameters are selected based on the literature [3]. Table 2 shows
the evolutionary parameters used.

4.4 Methods for Comparison

The proposed GP is compared with several state-of-the-art feature selection
and classification algorithms. The Waikato Environment for Knowledge Analysis
(WEKA) package [16] is used to run the feature selection and classification
algorithms.

Benchmark Classification Methods. Five different classifiers are used (with
both the original features and the GP’s selected features) and compared to GP
classifier. The five classifiers are commonly used in classification tasks.

1. Naive Bayes (NB): NB belongs to the category of Bayesian classifiers which
captures the behavior of the data on probability distributions. NB makes an
assumption that all the features are conditionally independent [35].

2. Support Vector Machines (SVM): SVM forms a number of hyperplanes and
classifies the instances according to the side of the hyperplane to which the
instance belongs to [35].

3. Decision Tree (J48): J48 classifies instances through sorting them in a tree
which is composed of a hierarchy of nodes. The root node first test the value
of the feature and then moves to the child nodes until the label node is
reached [35].

4. Conjunctive Rule (CR): CR builds a single conjunctive rule to predict the
class labels. It uses the “AND” logical operator to determine correlation of
features and classes [35].

5. Voted Perceptron (VP): VP is based on the perceptron algorithm and uses
kernel functions to build hyperplanes as decision boundaries [14].

4.4.1 Benchmark Feature Selection Methods
We selected two common feature selection methods to compare the impact of
the GP’s selected features on the classifiers to the impact of those benchmark
methods’ features.
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1. Chi Square (χ2) feature evaluation: In statistical analysis methods, χ2 test
is used to measure the in dependency of two events. χ2 as a feature selection
measure the association between the features and classes. A score is given
for each feature, according to its χ2 statistics with respect to the class [13].

2. Information Gain Ratio (IGR) feature evaluation: The features are evaluated
by measuring the gain ratio with respect to the class [13]. The gain ratio is
the ratio between the total entropy of the features and the intrinsic value.

5 Results and Discussions

Several sets of experiments were performed to test the effectiveness of the pro-
posed GP method. Firstly, GP was run with all the 544 physicochemical proper-
ties of the peptides. Secondly, the same GP algorithm was run with the features
selected in the terminal nodes of the GP program. The feature selection phase
resulted in an average of 5 physicochemical properties for the data set DS1

and 14 property for data set DS2. The selected features are fed to the other
benchmark classifiers. Moreover, the benchmark feature selection methods (χ2

and IGR) were used to select features and the top 5 and 14 features from both
methods are fed to the same classifiers. In Table 3, the second column gives the
performance of the new GP method (annotated as GP). The mean (x), best and
the standard deviation (s) of the 30 runs are reported in the table. The rest of
the columns give the results of using the other benchmark classifiers. As these
classifiers are deterministic methods only one result is given for each data set.
The best performance for each data set is made bold. Table 4 gives the results
of using the GP’s, χ2’s and IGR ’s selected features with the five benchmark
classifiers. As the average number of features selected by GP for DS1 and DS2

is 5 and 14, respectively, we used the top 5 and 14 features from both χ2 and
IGR to make the comparison. When using the GP’s selected features, each of
the 30 runs’ features are used with each of the classifiers and the average (x),
best and standard deviation are given in Table 4. A statistical T-test (Z-Test)
with 0.05 degrees of freedom (95% significance level) is performed to check the
significance of the results between the proposed GP method and the methods
of comparison. In Tables 3 and 4 the mark − (+) means the method of com-
parison is significantly worse (better) than GP, while the mark = means that
there is no significant difference between them. For running GP, the Java-based
Evolutionary Computation research system ECJ [23] package was used. All the
experiments were executed on a machine with an Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz, running Ubuntu 4.6 and Java 1.7.0 25 with a total memory of
8GByte .

5.1 GP as a Classifier

As shown in Table 4, the best of GP managed to outperform NB, SVM, J48,
CR and VP for data set DS1. The best of GP is better than these classifiers by
2.37-9.48%, while the mean of the 30 runs is better than SVM, J48, CR and VP
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Table 3. Comparison of the performances of GP to benchmark classifiers.

Dataset
GP

Best x ±s NB SVM J48 CRt VP

DS1 59.48 56.62±1.00 57.11+ 56.03= 56.03= 50.00− 53.23−

DS2 90.15 90.14±0.01 67.07− 90.13− 87.91− 89.14− 90.13−

by 0.61-6.62%. For data set DS2, the average and the best of GP outperformed
all other classifiers. The results of T-test also show that GP is significantly bet-
ter than the five classifiers in the data set DS2. Furthermore, GP is significantly
better than CR and VP for data set DS2. However, there is no significant differ-
ence between GP and SVM and J48 in DS1. The only exception is NB in DS1,
where the performance of NB is slightly better than that of GP, although the
best of GP outperforms NB.

5.2 GP as a Feature Selection Method

For each GP run, we used the selected features in the terminal nodes of the GP
evolved tree with the other classifiers. The purpose is to test the capability of
GP to select the important features in addition to its capability for classifica-
tion. GP selected an average number of features of 5 for DS1 and 14 for DS2

and hence, for both χ2 and IGR the top 5 and 14 features were used. It can be
seen from Table 4 that GP managed to select the features, which achieve better
performance with most the classifiers than both χ2 and IGR on both DS1 and
DS2. The significance test shows that for DS1, GP selected features that have a
significant better performance than those of IGR when used with all the classi-
fiers. Moreover, it significantly outperformed χ2 when used with NB, SVM and
VP and they were similar when used with J48 and CR. For DS2, GP features
made a significantly better performance when used with NB and equal perfor-
mance when used with most of the rest of the classifiers. The only exception

Table 4. Comparison of the Performances of GP , χ2 and IGR Selected Features

Data
set

Classifier
GP χ2 T-test IGR T-test

Best x ± s Best Best

DS1

NB 57.11 53.87±2.34 50.96 − 52.50 −
SVM 60.56 54.71±2.19 52.90 − 52.04 −
J48 57.11 54.60±1.61 54.19 = 52.04 −
CR 57.32 53.00±2.14 52.68 = 50.04 −
VP 60.56 54.35±2.32 52.04 − 52.04 −

DS2

NB 85.77 84.59±0.55 71.24 − 71.05 −
SVM 90.15 90.15±0.0 90.14 = 90.22 =
J48 90.34 89.95±0.29 90.06 + 90.13 +
CR 90.15 90.15±0.0 90.22 = 90.22 =
VP 90.22 90.15±0.20 90.22 = 90.22 =
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here is with J48 which has a slightly better accuracy with χ2 and IGR more
than the average of GP. This is perhaps because J48 also uses IGR to further
select features, and therefore might be biased to IGR.

6 Conclusions and Future Work

The objective of this paper was to investigate the performance of GP capability
to reduce the number of redundant properties with preserving the maximum
accuracy for measuring peptide detectability. This goal was successfully achieved
by developing a GP system which selects features and at the same time performs
detection. The proposed method works by maximising the classification accuracy
and minimising the number selected features in the terminal nodes of the GP
tree, and therefore, the system is a multi-objective system. The new method is
tested against five other classifiers namely, NB, SVM, J48, CR, VP. Moreover,
in order to compare the feature selection capability of the proposed method,
it is tested against two well known feature selection methods, namely, χ2 and
IGR. The results show that GP outperformed most of these state of art feature
selection and classification algorithms.

There are many other investigations that need to be done in the future. Firstly,
the peptide data sets are mostly characterized by being unbalanced data which
means that peptides in one class (mostly flyer’s class) is much less than the
peptides in the other class. This makes the classifiers biased towards the majority
class, and hence, the specificity rate will be much higher than the sensitivity rate.
This means that the overall classification accuracy is not the only evaluation
criteria that should be used for measuring the peptide detectability and the
imbalance problem should be taken into account. The use of GP to solve the
imbalance problem will be the first future direction. Another future direction is
the verification of the candidate biomarkers detection in MS data through the
linkage of the detectability of the biomarkers in the mass spectrometer. Finally,
the absolute quantification of proteins using GP through peptide detection will
be performed in the future.
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